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Abstract. The SDN Next Generation Integrated Architecture (SDN-NGeNIA) project
addresses some of the key challenges facing the present and next generations of science programs
in HEP, astrophysics, and other fields, whose potential discoveries depend on their ability
to distribute, process and analyze globally distributed Petascale to Exascale datasets. The
SDN-NGenIA system under development by Caltech and partner HEP and network teams is
focused on the coordinated use of network, computing and storage infrastructures, through a
set of developments that build on the experience gained in recently completed and previous
projects that use dynamic circuits with bandwidth guarantees to support major network flows,
as demonstrated across LHC Open Network Environment [1] and in large scale demonstrations
over the last three years, and recently integrated with PhEDEx and Asynchronous Stage Out
data management applications of the CMS experiment at the Large Hadron Collider. In addition
to the general program goals of supporting the network needs of the LHC and other science
programs with similar needs, a recent focus is the use of the Leadership HPC facility at Argonne
National Lab (ALCF) for data intensive applications.

1. Introduction
The SDN-NGeNIA project aims to enable the LHC and other leading programs in high energy
physics and other global science domains funded by the Department of Energy (DOE) to operate
with a new level of efficiency and control, through the development of a Next Generation
Integrated Architecture (NGenIA) based on intelligent software defined network (SDN)-driven
network systems coupled to high throughput applications. While the initial focus is on the
challenging LHC use case, the systems and products being developed are general, and apply to
many fields of data intensive science ranging from astrophysical sky surveys to bioinformatics and
earth observation, as well as other organizations facing the challenges of extracting knowledge
from distributed multi-Petabyte data stores.

A central concept in this development program is a new paradigm consistent network
operations among widely distributed computing and storage facilities. In these facilities, stable
high throughput flows at set rates on load-balanced network paths, up to flexible high water
marks. These marks are adjusted in real time to accommodate other network traffic. The
large smooth flows are launched and managed by SDN services that act in concert with the
experiments site-resident data distribution and management systems, to meet the expanding
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Figure 1. Observed and projected traffic over the ESnet national research and education
network. A data volume of 43 PB per month was observed in April 2016. The rate of increase
exceeds the historical trend of 10 times increase every 4 years.

needs of the science programs. A more detailed description of the concept and components of
SDN-NG enIA is given in [2].

2. New challenges in exascale data and computing
The largest science datasets today from the Large Hadron Collider (LHC) are around
300 Petabytes. Exabyte datasets are on the horizon by the end of the LHC Run2 in 2018.
During the High-Luminosity LHC (HL LHC) [3] era that starts in 2025 the size of the datasets
will grow by an additional 100 times, reaching the range of 50-100 Exabytes. The rate of traffic
growth over the national research and education networks (NRENs) that support the LHC and
other science programs is given in figure 1. It shows the observed and projected traffic on the
Energy Sciences Network (ESnet) [4] that connects the national labs in the united states and
peers with European and other NRENs.

At the present stage of the LHC running we are already dependent on the high performance
computer networks to be able to distribute the data to the data centers of the LHC Grid all
over the world. With the increase of the volume of the data described above this dependency
will become even larger. In addition, other fields of science will have growing needs (see also
Section 3 below). There will be, therefore, a stiff competition for the use of large but limited
network resources.

3. The future of big data
As mentioned already, in addition to the HL LHC, other fields of science will have big amounts
of data, in fact they will probably eclipse the LHC. A table from [7] is shown in figure 2. It has
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Figure 2. Big Data: Astronomical or Genomical? A summary table of big data circa 2025 [5].

a summary of the big data circa 2025. For comparison, the HL LHC with have 2-10 EB data
per year at the storage level, data acquisition at 10 TB/s, offline of the order of 0.1 TB/s and
will require 0.065 to 0.2 × 1012 CPU hours for analysis.

4. Next generation integrated systems for exascale science
A major opportunity for helping solve the challenges of the exascale data and computing is the
synergy among:

(i) Global operations data and workflow management systems developed by the High Energy
Physics (HEP) programs, geared to work with increasingly diverse and elastic resources to
respond to peak demands.

• These are enabled by distributed operations and security infrastructures
• They ride on high-capacity but presently mostly passive networks.

(ii) deeply programmable, agile software defined networks (SDN) emerging as multi-domain
operating systems. Furthermore, new network paradigms are emerging that focus on the
content, such as Content Delivery Networks and Named Data Networks,

(iii) Machine learning, modeling and simulation as well as game theoretical methods. A few steps
are foreseen here: extraction of key variables, optimization, then real-time self-optimizing
workflows.

A service diagram of NGenIA with the various components mentioned above as well as the
Leadership and HPC Facilities (see Section 6), Cloud and other opportunistic resources is shown
in figure 3.

5. SDN-NGenIA vision
SDN-NGenIA aims at building a distributed environment, where resources can be deployed
flexibly to meet the demands. A natural path to this vision is Software Defined Networking
(SDN). SDN separates the functions that control the flow of traffic from the switching
infrastructure that forwards the traffic through the use of open deeply programmable SDN
controllers. This strategy has many benefits:

• It replaces stovepiped vendor hardware/software solutions with open platform-independent
software services;

• It virtualizes services and networks, lowering cost and energy, with greater simplicity;

• It adds intelligent dynamics to system operations;

• It is already a major direction of network research and industry.
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Figure 3. Components of NGenIA, including external resources such as LCF, Cloud, and other
opportunistic.

The system envisioned here has built-in intelligence and will require excellent monitoring at
all the levels.

6. Leadership computing facilities
Part of the NGenIA strategy is based on the need to develop and deploy new data- and network-
intensive operational modes. Part of the solution is the use of the US Leadership Computing
Facilities (LCFs). The Caltech team has already pilot projects with the Argonne Leadership
Computing Facility (ALFC) [6] to test running workflows from the CMS experiment on the HPC
clusters at Argonne.

In order to develop this vision, the key challenges from the client site and science Virtual
Organization side (using the HEP example) are:

• Recasting HEP’s generation, reconstruction and simulation codes, case by case, to adapt
to the emerging High Performance Computing (HPC) architectures, addressing issues of
memory, dataflow versus CPU etc.

• Identifying and matching the units of work in HEP’s workflow to the specific HPC resources
or sub-facilities well-adapted to the task (after the code recasting step)

• Building dynamic and adaptive just-in-time systems that respond rapidly (on the required
timescale) to offered resources as they occur.

• Developing algorithms that effectively co-schedule CPU, memory, storage, IO port, local
and wide area network resources.

• Developing an appropriate security infrastructure, and corresponding system architectures
in hardware and software, that meet the security needs of the LCF.

• Applying machine learning to optimize the workflow of the HEP experiments, using self-
organizing system methods which are well-adapted to such problems; while also taking the
special parameters, conditions, and restrictions of LCF into account as part of the workflow.
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• Exploiting the intense ongoing development of virtualized computing systems, networks
and services in the research community and in industry: in the data center, campus
and wide area network space aimed at coherent distributed system operations (including
software defined networking, network function virtualization, and service chaining, along
with emerging higher level concepts).

The challenges on the LHC and HPC facilities mirror those described above. In addition,
another key issue for the LCFs is a new concept of secure ways to bridge the site edge, such as
next generation Science Demilitarized Zones (DMZs) [8] or similar edge-bridging methods.

7. Open vSwitch for managing site interactions locally and over the WAN
Open vSwitch (OvS) [9] is a virtual switch licensed under the open source Apache 2.0
license, which is already part of the main Linux distributions. Furthermore, OvS understands
OpenDaylight (ODL) [10], which is presently the most popular software platform for developing
SDN applications and the one we are using in this project.

Part of the challenge for building an end-to-end SDN system is the configuration of data flows
all the way to the end host. Through the use of OvS we will be able to orchestrate end-to-end
configuration of data flows. They can be orchestrated from the local/campus SDN controller or
brought down from the regional/WAN controller.

OvS provides quality of service (QoS) and traffic shaping right at the end-point of a data
transfer. QoS via OvS is protocol agnostic: one can use TCP (GridFTP [11], FDT [12]) or UDP.
The use of OvS helps to achieve better throughput by moderating and stabilizing data flows;
e.g. in cases where the upstream switches have limited buffer memory. Under the hood, OvS
uses the TC (Traffic control) part of iproute2 to configure and control the Linux kernel network
scheduler. Monitoring is done with standard sFlow and/or NetFlow protocols.

8. Consistent network operations in OpenDaylight
The work described in this section is done in collaboration with the group of Prof. Richard Yang
at Yale. The idea is to allow the tools of the CMS experiment at the LHC to interface with
the OpenDaylight (ODL) controllers. The application layer traffic optimization (ALTO) [13]
developed by Yang et al provides network information with the goal of modifying resource
consumption patterns, while improving application performance.

The CMS tools will collaborate with an orchestrator (ExaO) developed by Caltech and Yale
for the part related to network configuration and data transfers, while retaining the parts related
to user requests, data locations and enforcement of policies. A schematic of the setup for testing
ExaO is shown in figure 4.

Two additional ingredients of this solution are the network resident site abstraction (RSA)
and control/path calculator (SPCE). They receive data requests and raw network state; compute
on-demand, dynamic inter-domain network abstraction; and enforce application policies in
networks. Furthermore, they present to the orchestrator only the necessary information about a
site by hiding the details that would make optimal path calculations computationally expensive.

The consistency with the end hosts is reached using OvS as described in the previous section.

Summary
The NGENIA-ES program as envisioned will:

• Develop a synergy and convergence between data intensive science and exascale computing;

• Build a new class of intelligent, agile network systems;

• Generate novel, data-intensive workflows, accelerating the time to discovery of major science
programs;
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Figure 4. Consistent operations between tools of the CMS experiment and the SDN components
as well as between SDN controllers and end-hosts.

• Work together with Leadership Computing Facilities to create Computing, Storage and
Network (CSN) ecosystems for next-generation data intensive science;

• Develop new modes of network operations that promise to redefine the state of the art in
high throughput while remaining compatible with the tide of smaller flows exchanged over
the worlds research and education networks;

• Create new high throughput workflow and global system control and optimization
methodologies, coupled to novel proactive, reactive and predictive Software Defined Network
system designs; and

• Use data-driven methods both for optimizing the workflow of the science experiments and
for scheduling and optimization of the network resources.
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